Verify that $(I_n−XY)^{-1}\cdot X=X\cdot (I_m−YX)^{-1}$
The first $I$ is of order $n$ and the second is of order $m$.
$X$ is $n\times m$
$Y$ is $m\times n$
Verify that $(I_n−XY)^{-1}\cdot X=X\cdot (I_m−YX)^{-1}$
The first $I$ is of order $n$ and the second is of order $m$.
$X$ is $n\times m$
$Y$ is $m\times n$
$$(I-XY)^{-1}X=X(I-YX)^{-1} \\ \Rightarrow (I-XY)(I-XY)^{-1}X=(I-XY)X(I-YX)^{-1} \\ \Rightarrow X=(I-XY)X(I-YX)^{-1} \\ \Rightarrow X(I-YX)=(I-XY)X(I-YX)^{-1}(I-YX) \\ \Rightarrow X(I-YX)=(I-XY)X \\ \Rightarrow X-XYX=X-XYX $$
which is true.
Therefore, the relation $(I-XY)^{-1}X=X(I-YX)^{-1}$ stands!!