$$L=\lim_{x\to0}\frac{e^x-1-x-x^2/2}{x^3}$$
I give the two alternate ways so that no one gives them again in their answer:
Using L'Hospital: $$L=\lim_{x\to0}\frac{e^x-x-1}{3x^2}=\lim_{x\to0}\frac{e^x-1}{6x}=\lim_{x\to0}\frac{e^x}{6}=\frac16$$ Using Taylor: $$L=\lim_{x\to0}\frac{\color{red}{(1+x+x^2/2+x^3/6+O(x^4))}-1-x-x^2/2}{x^3}=\frac16$$ Using nothing(not infact): $$L=\lim_{x\to0}\frac{e^x-1-x^2/2}{x^3}\tag{sorry I omitted the x}\\ =\lim_{x\to0}\frac{e^{2x}-1-2x^2}{8x^3}\\ 8L=\lim_{x\to0}\frac{e^{2x}-1-2x^2}{x^3}\\ 7L=\lim_{x\to0}\frac{e^{2x}-e^x-3x^2/2}{x^3}\\ 7L=\lim_{x\to0}\frac{e^{4x}-e^{2x}-6x^2}{8x^3}\\ 56L=\lim_{x\to0}\frac{e^{4x}-e^{2x}-6x^2}{x^3}\\ 49L=\lim_{x\to0}\frac{e^{4x}-2e^{2x}+e^x-9x^2/2}{x^3}=?$$