Fermats or Euler is exactly what you need :) (or anything else you know )
what you need to know is this :-
if $n= p_1p_2...p_i $ such that $p_1,p_2,..., p_i$ are distinct
primes which means $GCD(p_j,p_k)=1$ for $j,k \leq i$ , and $x=m \bmod p_1=m
\bmod p_2 = ...=m \bmod p_i$ then $x=m \bmod (p_1p_2...p_i)
\rightarrow x=m \bmod n$
now GCD(3,7 )=1 ,GCD(3,11)=1 , GCD(7,11)=1 :-
$2^{{\color{DarkBlue} {16}}}={\color{Green} 1} \bmod {\color{Red} {17} }\\
2^{{\color{DarkBlue} 2}}={\color{Green} 1} \bmod {\color{Red} 3}\\
2^{{\color{DarkBlue} {10}}}={\color{Green} 1} \bmod {\color{Red} {11} }\\
2^{{\color{DarkBlue} {16\times35}}}=2^{{\color{Magenta} {560} }}={\color{Green} 1} \bmod {\color{Red} {17} }\\
2^{{\color{DarkBlue} {2\times280}}}=2^{{\color{Magenta} {560 } }}= {\color{Green} 1} \bmod {\color{Red} 3}\\
2^{{\color{DarkBlue} {10\times56 } }}=2^{{\color{Magenta} {560} }}= {\color{Green} 1} \bmod {\color{Red} {11} }$
$2^{\color{Magenta}{560} }= {\color{Red} 1} \bmod {\color{Blue} {3\times 11\times 17}}\\
2^{\color{Magenta}{560} }= {\color{Red} 1} \bmod {\color{Blue} {561}}\\$
thus :-
$2^{\color{Magenta}{561} }= {\color{Red} 2} \bmod {\color{Blue} {561}} $
let me know if you dint get it yet :D
(1)(1117)(1) + (2)(317)(8) + 2(3*11)(8) $$ ?
– AgentS Sep 17 '14 at 14:20