How do we integrate forms of following type with imaginary terms involved? Can we get a closed form of it as result?
$\int-\frac{1}{4}(e^{-ix}-e^{ix})^2e^{\frac{4i(e^{-ix}-e^{ix})}{(e^{-ix}+e^{ix})^2}} \ dx \tag1$
How do we integrate forms of following type with imaginary terms involved? Can we get a closed form of it as result?
$\int-\frac{1}{4}(e^{-ix}-e^{ix})^2e^{\frac{4i(e^{-ix}-e^{ix})}{(e^{-ix}+e^{ix})^2}} \ dx \tag1$
$\int-\dfrac{1}{4}(e^{-ix}-e^{ix})^2e^\frac{4i(e^{-ix}-e^{ix})}{(e^{-ix}+e^{ix})^2}~dx$
$=\int(\sin^2x)e^{2\sec x\tan x}~dx$
$=\int(1-\cos^2x)\sum\limits_{n=0}^\infty\dfrac{4^n\sec^{2n}x\tan^{2n}x}{(2n)!}dx+\int(1-\cos^2x)\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}\sec^{2n+1}x\tan^{2n+1}x}{(2n+1)!}dx$
$=\int\sum\limits_{n=0}^\infty\dfrac{4^n\sec^{2n}x\tan^{2n}x}{(2n)!}dx-\int\sum\limits_{n=0}^\infty\dfrac{4^n\sec^{2n-2}x\tan^{2n}x}{(2n)!}dx+\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}\sec^{2n+1}x\tan^{2n+1}x}{(2n+1)!}dx-\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}\sec^{2n-1}x\tan^{2n+1}x}{(2n+1)!}dx$
$=\int dx+\int\sum\limits_{n=1}^\infty\dfrac{4^n\sec^{2n}x\tan^{2n}x}{(2n)!}dx-\int\cos^2x~dx-2\int\tan^2x~dx-\int\sum\limits_{n=2}^\infty\dfrac{4^n\sec^{2n-2}x\tan^{2n}x}{(2n)!}dx+\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}\sec^{2n+1}x\tan^{2n+1}x}{(2n+1)!}dx-\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}\sec^{2n-1}x\tan^{2n+1}x}{(2n+1)!}dx$
$=\int\sin^2x~dx-2\int\tan^2x~dx+\int\sum\limits_{n=0}^\infty\dfrac{4^{n+1}\sec^{2n+2}x\tan^{2n+2}x}{(2n+2)!}dx-\int\sum\limits_{n=0}^\infty\dfrac{4^{n+2}\sec^{2n+2}x\tan^{2n+4}x}{(2n+4)!}dx+\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}\sec^{2n+1}x\tan^{2n+1}x}{(2n+1)!}dx-\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}\sec^{2n-1}x\tan^{2n+1}x}{(2n+1)!}dx$
$=\int\dfrac{1-\cos2x}{2}dx-2\int(\sec^2x-1)~dx+\int\sum\limits_{n=0}^\infty\dfrac{4^{n+1}\sec^{2n}x\tan^{2n+2}x}{(2n+2)!}d(\tan x)-\int\sum\limits_{n=0}^\infty\dfrac{4^{n+2}\sec^{2n}x\tan^{2n+4}x}{(2n+4)!}d(\tan x)+\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}\sec^{2n}x\tan^{2n}x}{(2n+1)!}d(\sec x)-\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}\sec^{2n-2}x\tan^{2n}x}{(2n+1)!}d(\sec x)$
$=\int\dfrac{3}{2}dx-\int\dfrac{\cos2x}{2}dx-2\int\sec^2x~dx+\int\sum\limits_{n=0}^\infty\dfrac{4^{n+1}(1+\tan^2x)^n\tan^{2n+2}x}{(2n+2)!}d(\tan x)-\int\sum\limits_{n=0}^\infty\dfrac{4^{n+2}(1+\tan^2x)^n\tan^{2n+4}x}{(2n+4)!}d(\tan x)+\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}(\sec^2x-1)^n\sec^{2n}x}{(2n+1)!}d(\sec x)-\int\sum\limits_{n=0}^\infty\dfrac{2^{2n+1}(\sec^2x-1)^n\sec^{2n-2}x}{(2n+1)!}d(\sec x)$
$=\int\dfrac{3}{2}dx-\int\dfrac{\cos2x}{2}dx-2\int\sec^2x~dx+\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{4^{n+1}C_k^n\tan^{2k}x\tan^{2n+2}x}{(2n+2)!}d(\tan x)-\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{4^{n+2}C_k^n\tan^{2k}x\tan^{2n+4}x}{(2n+4)!}d(\tan x)+\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{2^{2n+1}C_k^n(-1)^{n-k}\sec^{2k}x\sec^{2n}x}{(2n+1)!}d(\sec x)-\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{2^{2n+1}C_k^n(-1)^{n-k}\sec^{2k}x\sec^{2n-2}x}{(2n+1)!}d(\sec x)$
$=\int\dfrac{3}{2}dx-\int\dfrac{\cos2x}{2}dx-2\int\sec^2x~dx+\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{4^{n+1}n!\tan^{2n+2k+2}x}{(2n+2)!k!(n-k)!}d(\tan x)-\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{4^{n+2}n!\tan^{2n+2k+4}x}{(2n+4)!k!(n-k)!}d(\tan x)+\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^{n-k}2^{2n+1}\sec^{2n+2k}x}{(2n+1)!k!(n-k)!}d(\sec x)-\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^{n-k}2^{2n+1}\sec^{2n+2k-2}x}{(2n+1)!k!(n-k)!}d(\sec x)$
$=\dfrac{3x}{2}-\dfrac{\sin2x}{4}-2\tan x+\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{4^{n+1}n!\tan^{2n+2k+3}x}{(2n+2)!k!(n-k)!(2n+2k+3)}-\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{4^{n+2}n!\tan^{2n+2k+5}x}{(2n+4)!k!(n-k)!(2n+2k+5)}+\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^{n-k}2^{2n+1}n!\sec^{2n+2k+1}x}{(2n+1)!k!(n-k)!(2n+2k+1)}-\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^{n-k}2^{2n+1}n!\sec^{2n+2k-1}x}{(2n+1)!k!(n-k)!(2n+2k-1)}+C$