Hint:
To get started, you need to work with the inequality $\displaystyle\left|\frac{2}{x+1}-\frac{1}{2}\right|<\epsilon$. We can rewrite this as $\displaystyle\left|\frac{4-(x+1)}{2(x+1)}\right|<\epsilon$, which gives $\displaystyle\left|\frac{3-x}{2(x+1)}\right|<\epsilon$ or, equivalently, $\displaystyle\frac{\left|x-3\right|}{2|x+1|}<\epsilon$.
Now we need to get an upper bound for the factor $\frac{1}{|x+1|}$, so one way to do this is to assume
that our value of $\delta \le 1$. Under this assumption,
$0<|x-3|<\delta\implies|x-3|<1\implies 2<x<4\implies3<x+1<5\implies$
$\;\;\;\displaystyle\frac{1}{3}>\frac{1}{x+1}>\frac{1}{5}\implies \frac{1}{\left|x+1\right|}<\frac{1}{3}$.
Now you need to find a $\delta>0$ which satisfies $\delta\le1$, and
$\displaystyle0<|x-3|<\delta\implies\frac{|x-3|}{2|x+1|}=\frac{|x-3|}{2}\frac{1}{|x+1|}<\epsilon$.
f(x)=L+- ε 2=(1/2+-ε)x + 1 x= 3+- 2/ε
I think i have to define values for x(0) and x(1)
– Jacob Culleny Sep 16 '14 at 20:44