Question:
Prove ${2n \choose r+1}$ is maximum for $r=n$
My Efforts:
$$\begin{align} {2n \choose r+1} > {2n \choose r} & \Leftrightarrow \frac{(2n)!}{(r+1)!(2n-r-1)!} > \frac{(2n)!}{r!(2n-r)!}\\ &\Leftrightarrow\frac{(2n-r)!}{(2n-r-1)!}>\frac{(r+1)!}{r!} \\ &\Leftrightarrow 2n-r > r+1 \\ &\Leftrightarrow ,r<n-\frac{1}{2} \\ \end {align}$$
I don't know how to move ahead.
P.S. my teacher gave me clue to begin with $ {2n \choose r+1} > {2n \choose r} $