Can anyone help me solve these two limits? I am learning limits on my own and I progress slowly.
$\lim\limits_{x\to \infty}\left ( \frac{1-3x}{1-2x} \right )^{\frac{-2x+1}{x}}$
$\lim\limits_{x\to0}\frac{x}{\tan( 2 x ) }$
Any help is welcome.
Can anyone help me solve these two limits? I am learning limits on my own and I progress slowly.
$\lim\limits_{x\to \infty}\left ( \frac{1-3x}{1-2x} \right )^{\frac{-2x+1}{x}}$
$\lim\limits_{x\to0}\frac{x}{\tan( 2 x ) }$
Any help is welcome.
$$\frac{1-3x}{1-2x}-1=\frac{-x}{1-2x}$$
Use $\displaystyle\lim_{n\to\infty}\left(1+\frac1n\right)^n=e$
$$\lim_{x\to0}\frac x{\tan2x}=\lim_{x\to0}\cos2x\cdot\lim_{x\to0}\frac1{\dfrac{\sin2x}{2x}}\cdot\frac12$$
Since $x^y$ is continuous near $x=\frac32$ and $y=-2$, we get $$ \begin{align} \lim_{x\to\infty}\left(\frac{1-3x}{1-2x}\right)^{\frac{-2x+1}{x}} &=\left(\frac32\right)^{-2}\\ &=\frac49 \end{align} $$ As shown in this answer, $\lim\limits_{x\to0}\dfrac{\tan(x)}{x}=1$, and since $\frac1x$ is continuous near $x=1$, we get $$ \begin{align} \lim_{x\to0}\frac{x}{\tan(2x)} &=\frac12\lim_{x\to0}\frac{2x}{\tan(2x)}\\ &=\frac12 \end{align} $$