A well known proof by Erdős shows a lower bound on the Ramsey number $r(k,k)$ using the probabilistic method. The theorem goes thusly:
Let $n,\, k\in\mathbb{N}$ such that ${n \choose k}2^{1-{k \choose 2}}<1$. Then $r\left(k,k\right)>n$.
In particular, if $k\geq3$ then $r\left(k,k\right)>\lfloor2^{\frac{k}{2}}\rfloor$
I understand the proof of the first part, but I'm having trouble with the algebra in the case where $k\geq3$. It goes like this.
${n \choose k}2^{1-{k \choose 2}}<\frac{n^{k}}{k!}2^{1-\frac{k}{2}-\frac{k^{2}}{2}}=\frac{2^{1+\frac{k}{2}}}{k!}\left(\frac{n}{2^{\frac{k}{2}}}\right)^{k}\leq\frac{2^{1+\frac{k}{2}}}{k!}<1$
Could someone give me a hint how best to read this part?
Related question: Ramsey lower bounds
Related wiki entry: here