I want to show that if $X_1,X_2$ are independent and distributed Exp($\theta$), then the difference $X_1-X_2$ is distributed Laplace($0$,$\theta$). I want to use the method of moment generating functions (I tried the method of cumulative distribution functions and it just wasn't working out.), so I would like to get the moment generating function of the Laplace distribution. If $Y\sim\text{Laplace}(0,\theta)$ then $M_Y(t)=E[e^{tY}]$
$=\int_{-\infty}^{\infty}\frac{1}{2\theta}e^{ty}e^{-|\frac{y}{\theta}|}$
$=\int_{-\infty}^{\infty}\frac{1}{2\theta}e^{\theta t{\sqrt{\frac{y^2}{\theta^2}}}-\sqrt{\frac{y^2}{\theta^2}}}$
$=\int_{-\infty}^{\infty}\frac{1}{2\theta}e^{(\theta t-1)\sqrt{\frac{y^2}{\theta^2}}}$
and I'm stuck. Any help would be appreciated.