$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{t = 1,2,3,\ldots}$ and $\ds{0 < a < 1}$:
\begin{align}
\color{#66f}{\large\sum_{k = 0}^{n}k^{t}{n \choose k}}&
=\sum_{k = 1}^{\infty}k^{t}{n \choose n - k}
=\sum_{k = 1}^{\infty}k^{t}\oint_{\verts{z}\ =\ a}
{\pars{1 + z}^{n} \over z^{n - k + 1}}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ a}{\pars{1 + z}^{n} \over z^{n + 1}}
\sum_{k = 1}^{\infty}{z^{k} \over k^{-t}}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ a}{\pars{1 + z}^{n} \over z^{n + 1}}
{\rm Li}_{-t}\pars{z}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ a}{\pars{1 + z}^{n} \over z^{n + 1}}
\pars{-1}^{t}\sum_{\ell = 0}^{t}\pars{-1}^{\ell}{\rm S}\pars{t + 1,\ell + 1}
\pars{1 - z}^{-\ell - 1}\,{\dd z \over 2\pi\ic}
\end{align}
where $\ds{{\rm S}\pars{n,k}}$ are the
Stirling Numbers of the Second Kind.
\begin{align}
\color{#66f}{\large\sum_{k = 0}^{n}k^{t}{n \choose k}}&
=\pars{-1}^{t}\sum_{\ell = 0}^{t}\pars{-1}^{\ell}{\rm S}\pars{t + 1,\ell + 1}
\times
\\[3mm]&\sum_{\ell' = 0}^{\infty}{-\ell - 1 \choose \ell'}
\pars{-1}^{\ell'}\oint_{\verts{z}\ =\ a}{\pars{1 + z}^{n} \over z^{n - \ell' + 1}}
\,{\dd z \over 2\pi\ic}
\\[3mm]&=\pars{-1}^{t}\sum_{\ell = 0}^{t}\pars{-1}^{\ell}{\rm S}\pars{t + 1,\ell + 1}\sum_{\ell' = 0}^{n}{\ell + \ell' \choose \ell'}
{n \choose \ell'}
\\[3mm]&=\color{#66f}{\large\pars{-1}^{t}\sum_{\ell = 0}^{t}\pars{-1}^{\ell}
{\rm S}\pars{t + 1,\ell + 1}\ _{2}{\rm F}_{1}\pars{1 + \ell,-n;1;-1}}
\end{align}