For convenience, I borrow mike's notation and define,
$$Q(x):=a+bx+cx^2+dx^3+cx^4+bx^5+ax^6.$$
As indicated in the problem statement above, I also define,
$$p(z):=p=2a(4z^3-3z)+2b(2z^2-1)+2cz+d.$$
I have had a considerable amount of trouble trying to transform the integral over $x$ into the desired integral over $z$ via the substitutions $x=z\pm\sqrt{z^2-1}$, i.e., trying to show directly that:
$$\int\frac{\mathrm{d}x}{\sqrt{Q(x)}}=-\frac{1}{\sqrt{2}}\int\frac{\mathrm{d}z}{\sqrt{(z+1)\,p(z)}}\mp\frac{1}{\sqrt{2}}\int\frac{\mathrm{d}z}{\sqrt{(z-1)\,p(z)}};~\left[x=z\pm\sqrt{z^2-1}\right].$$
As mike explained in his response, the key step is demonstrating that
$$\sqrt{x^3}dx
=-\frac{1}{\sqrt{2}}\frac{dz}{\sqrt{z+1}}\mp\frac{1}{\sqrt{2}}\frac{dz}{\sqrt{z-1}},$$
but despite all my efforts I've been unsuccessful at proving the above relation.
It was suggested in a comment (now removed) that we work backwards and instead transform the integral over $z$ into the integral over $x$. Surprisingly (to me at least), the transformation turns out to be much clearer in reverse. The inverse relation for the substitution formulas
$$x=\varphi_{\pm}{(z)}=z\pm\sqrt{z^2-1}$$
is,
$$z=\varphi_{\pm}^{-1}{(x)}=\frac{x^2+1}{2x}.$$
Note that the domain of both of the functions $\varphi_{\pm}{(z)}$ is $(-\infty,-1]\cup[1,+\infty)$, whereas the range of $\varphi_{+}{(z)}$ is $[-1,0)\cup[1,+\infty)$ while the range of $\varphi_{-}{(z)}$ is $(-\infty,-1]\cup(0,1]$.
The differential $\mathrm{d}z$ is transformed under the substitution $z=\frac{x^2+1}{2x}=\frac12\left(x+\frac{1}{x}\right)$ to:
$$\mathrm{d}z=\frac{x^2-1}{2x^2}\,\mathrm{d}x.$$
We also have:
$$\begin{align}
p(z)
&=2a(4z^3-3z)+2b(2z^2-1)+2cz+d\\
&=a\frac{x^6+1}{x^3}+b\frac{x^4+1}{x^2}+c\frac{x^2+1}{x}+d\\
&=\frac{Q(x)}{x^3};\\
\end{align}$$
$$z+1=\frac{(x+1)^2}{2x};$$
$$z-1=\frac{(x-1)^2}{2x}.$$
And so, the integrals over $z$ transform as:
$$\begin{align}
\frac{1}{\sqrt{2}}\int\frac{\mathrm{d}z}{\sqrt{(z\pm1)\,p(z)}}
&=\frac{1}{\sqrt{2}}\int\frac{\left(\frac{x^2-1}{2x^2}\right)\,\mathrm{d}x}{\sqrt{\frac{(x\pm1)^2}{2x}\cdot\frac{Q(x)}{x^3}}}\\
&=\frac12\int\frac{\left(x^2-1\right)\,\mathrm{d}x}{\left|x\pm1\right|\sqrt{Q(x)}}\\
&=\frac12\int\operatorname{sgn}{\left(x\pm1\right)}\frac{\left(x\mp1\right)\,\mathrm{d}x}{\sqrt{Q(x)}}\\
\end{align}$$
The above integrals probably shed some light on what was causing the difficulty beforehand. Because of the $\text{sgn}$-function factors, the only way to reduce the sum/differences of the integrals to the desired form $\int\frac{\mathrm{d}x}{\sqrt{Q(x)}}$ is by restricting the variable $x$ to an appropriate interval. We can easily check that,
$$
1=
\begin{cases}
\frac12(x-1)\operatorname{sgn}{\left(x+1\right)}-\frac12(x+1)\operatorname{sgn}{\left(x-1\right)};~~x<-1\\
-\frac12(x-1)\operatorname{sgn}{\left(x+1\right)}-\frac12(x+1)\operatorname{sgn}{\left(x-1\right)};~~-1<x<1\\
-\frac12(x-1)\operatorname{sgn}{\left(x+1\right)}+\frac12(x+1)\operatorname{sgn}{\left(x-1\right)};~~x>1.\\
\end{cases}$$
As such, it may make the casework clearer to consider definite integrals instead of indefinite ones.
Let's assume an integration interval of $[x_1,x_2]\subseteq(0,1]\subseteq\text{range }{\varphi_{-}}$. Then,
$$\begin{align}
\int_{x_{1}}^{x_{2}}\frac{\mathrm{d}x}{\sqrt{Q(x)}}
&=\int_{x_{1}}^{x_{2}}\frac{\left[-\frac12(x-1)\operatorname{sgn}{\left(x+1\right)}-\frac12(x+1)\operatorname{sgn}{\left(x-1\right)}\right]\,\mathrm{d}x}{\sqrt{Q(x)}}\\
&=-\frac12\int_{x_{1}}^{x_{2}}\operatorname{sgn}{\left(x+1\right)}\frac{\left(x-1\right)\,\mathrm{d}x}{\sqrt{Q(x)}}-\frac12\int_{x_{1}}^{x_{2}}\operatorname{sgn}{\left(x-1\right)}\frac{\left(x+1\right)\,\mathrm{d}x}{\sqrt{Q(x)}}\\
&=-\frac{1}{\sqrt{2}}\int_{\varphi_{-}^{-1}{(x_{1})}}^{\varphi_{-}^{-1}{(x_{2})}}\frac{\mathrm{d}z}{\sqrt{(z+1)\,p(z)}}-\frac{1}{\sqrt{2}}\int_{\varphi_{-}^{-1}{(x_{1})}}^{\varphi_{-}^{-1}{(x_{2})}}\frac{\mathrm{d}z}{\sqrt{(z-1)\,p(z)}},\\
\end{align}$$
which is the expected formula. We would also also arrive at the (corrected) formula given in Gradshteyn had the integration interval instead been $[x_1,x_2]\subseteq[1,\infty)\subseteq\text{range }{\varphi_{+}}$. However, it appears that Gradshteyn's formulas fail from sign errors when $x<0$. It is my belief that this missing condition in the text's statement of the proposition explains my initial trouble with the forward derivation.