Question 1: Let $x,y \in S$ such that $x\sim y$ if $x^2 =y^2\pmod6 $. Show that $\sim$ is an equivalence relation.
This is what I tried:
Reflexive: $x^2\pmod6 = x^2$ implying $x\sim x$
Symmetry: suppose $x\sim y$, then $x^2 =y^2\pmod6$
Operating by inverse of $x^2$ both sides we have $e=(x^2)^{-1} y^2\pmod6$
Then I have $y^2=x^2\pmod6$, hence $y\sim x$
I would like to get some corrections up to here because am not sure with this
Question 2. Find the orbits of the given permutation: $$v:\mathbb{Z}\to\mathbb{Z}\quad\text{ defined by }\quad v(n)=n+3$$
Here is my solution which I would also want somebody to correct me!
Let the relation $\sim$ be defined on $\mathbb{Z}$ by $a\sim b$ if $b=a+3$
I consider that the orbits of $v$ are the classes of $\mathbb{Z}$ with respect to $\sim$ given by
$\{b\mid b=a+3\}$. Thus I get only three orbits which are $\{1,4,7,10,…,3n-2\mid n\in \mathbb{Z}\}$, $\{2,5,8,…,3n-1\mid n\in \mathbb{Z}\}$, and $\{3,6,9,…,3n \mid n\in \mathbb{Z}\}$.