I have to evaluate this limit without using L'Hopital. Could you help me
$$\lim_{x \to 0} {1-\sqrt{\cos(x)}\over x^2}$$
I already rationalized it:
$$\lim_{x \to 0} \left({1-\sqrt{\cos(x)}\over x^2}\right) \left({1+\sqrt{\cos(x)}\over 1+\sqrt{\cos(x)}}\right)$$
And I got:
$$\lim_{x \to 0} \left({1-\cos(x)\over x^2(1+\sqrt{\cos(x)})}\right)$$
What should I do next?