I need to find the summation of:
$$\begin{align*} &\sum_{i=0}^{\infty} iar^{i} &\text{if }|r|\lt 1 \end{align*}$$
I found this result: $$\begin{align*} \frac{a}{1-r} &= \sum_{i=0}^{\infty}ar^i &\text{if }|r|\lt 1\\ \frac{d}{dr}\frac{a}{1-r} &=\frac{d}{dr}\sum_{i=0}^{\infty}ar^i&\text{if }|r|\lt 1\\ \frac{a}{(1-r)^2} &= \sum_{i=0}^{\infty}\frac{d}{dr}ar^i &\text{if }|r|\lt 1\\ \frac{a}{(1-r)^2} &= \sum_{i=0}^{\infty} iar^{i-1}&\text{if }|r|\lt 1\\ \frac{a}{(1-r)^2} &=\sum_{i=1}^{\infty} iar^{i-1} &\text{if }|r|\lt 1 \end{align*}$$
However I do not get the last step. Shouldn't it be:
$$\begin{align*} \frac{a}{(1-r)^2} &= \sum_{i=0}^{\infty} iar^{i-1}&\text{if }|r|\lt 1\\ \frac{ar}{(1-r)^2} &=\sum_{i=0}^{\infty} iar^{i} &\text{if }|r|\lt 1 \end{align*}$$
Thank you