0

$$\lim_{k\to x}\frac{ \sin^2 k - \sin^2 x}{k - x}$$

I have tried to solve it over and over but couldnt.

I will be very happy if someone can show me the way to solve this .

Empy2
  • 50,853

3 Answers3

1

Hint: use $$ \sin^2k-\sin^2x=(\sin k-\sin x)(\sin k+\sin x), \sin k-\sin x=2\sin\frac{k-x}{2}\cos\frac{k+x}{2}, \lim_{x\to 0}\frac{\sin x}{x}=1. $$

Added: Note \begin{eqnarray} \frac{\sin^2k-\sin^2x}{k-x}&=&\frac{(\sin k-\sin x)(\sin k+\sin x)}{k-x}\\ &=&\frac{2\sin\frac{k-x}{2}\cos\frac{k+x}{2}(\sin k+\sin x)}{k-x}\\ &=&\frac{2\sin\frac{k-x}{2}}{k-x}\cos\frac{k+x}{2}(\sin k+\sin x) \end{eqnarray} and now I think you can get the limit.

xpaul
  • 44,000
0

You could also use Taylor series: since $\sin^2(y)=\frac{1-\cos(2y)}{2}$ and that the McLaurin series built at $ \cos(z)$ at $z=a$ is $$\cos(z)=\cos (a)-(y-a) \sin (a)-\frac{1}{2} (y-a)^2 \cos (a)+O\left((y-a)^3\right)$$ Now $$\lim_{k\to x}\frac{ \sin^2 (k) - \sin^2 (x)}{k - x}=\lim_{k\to x}\frac{ \cos^2( x) - \cos^2( k)}{k - x}=\lim_{k\to x}\frac{ \cos(2 x) - \cos(2 k)}{2(k - x)}$$ Using the development given above for $\cos(z)$ and replacing $z$ by $2k$ as well as $a$ by $2x$, you should arrive to $$\cos^2( x) - \cos^2( k)=2 (k-x) \sin (2 x)+2 (k-x)^2 \cos (2 x)+O\left((k-x)^3\right)$$

I am sure that you can take from here.

0

Using $\sin(A+B)\sin(A-B)=\sin^2A-\sin^2B$:

$$\lim_{k\to x}\frac{\sin^2k-\sin^2x}{k-x}=\lim_{k\to x}\frac{\sin(k-x)}{k-x}\cdot\lim_{k\to x}\sin(k+x)$$