3

Let $(a_n)_{n\in\mathbb{N}}$ be q sequence of real numbers with $\lim_{n\to\infty}a_n=0$. Show that this implies $$ \lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\lvert a_i\rvert=0. $$

This is my idea how to prove it, unfortunately do not know if it is right:

Let $\varepsilon > 0$ be arbitrary, then there exists a $N(\varepsilon)$ with $\lvert a_n\rvert < \varepsilon$ for all $n\geqslant N(\varepsilon)$.

So it is $$ \lim_{n\to\infty}\sum_{i=0}^{n-1}\lvert a_i\rvert=\sum_{i=0}^{\infty}\lvert a_i\rvert=\sum_{i=0}^{N(\varepsilon)-1}\lvert a_i\rvert+\sum_{i=N(\varepsilon)}^{\infty}\lvert a_i\rvert\leqslant\sum_{i=0}^{N(\varepsilon)-1}\lvert a_i\rvert+\sum_{i=N(\varepsilon)}^{\infty}\varepsilon\leqslant M $$ for a $M\geqslant 0$ for $\varepsilon \to 0$.

So the limits exists. Because $\lim_{n\to\infty}\frac{1}{n}=0$, i.e. the limit exsits, too, one can write the limit as the product of both limits, i.e. $$ \lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\lvert a_i\rvert=\lim_{n\to\infty}\frac{1}{n}\cdot\lim_{n\to\infty}\sum_{i=0}^{n-1}\lvert a_i\rvert=0\cdot M=0. $$

mathfemi
  • 2,631

2 Answers2

1

My solution is as follows:

Ignore $a_0$. As $\lim_{n\to\infty} a_n = 0$, for each $ε_n = 1/n^2$, we can find an integer $N(n)$ such that $|a_n| < 1/n^2$ for every $n \ge N(n)$. Then: $$sum_{k=1}^n |a_k| < sum_{k=1}^n 1/k^2 < sum_{k=1}^\infty 1/k^2 =\pi^2/6 $$ Then $$\lim_{n\to\infty} (1/n)\times(sum_{k=1}^n |a_k|) \le \lim_{n\to\infty} 1/n\times\pi^2/6 = 0$$

SiXUlm
  • 2,436
  • But why $\sum_{k=1}^{n}\lvert a_k\rvert < \sum_{k=1}^{n}1/k^2$? – mathfemi Sep 05 '14 at 10:52
  • From the assumption of $a_n$, I can choose $ε$ to be any arbitrarily small positive number (in this case is $1/n^2$). UNDER THAT CHOICE, I have $|a_n| < 1/n^2$, and thus same for the sum you asked. – SiXUlm Sep 05 '14 at 10:58
  • But only for $n\geqslant N(n)$. – mathfemi Sep 05 '14 at 10:59
  • The limit basically tells you that starting from some index ($N(n)$), the sequence will be very close to its limit (0), so it doesn't matter how the sequence behaves before that. – SiXUlm Sep 05 '14 at 11:06
  • I nvertheless think its not right, because in the second sum it shouldn't be 1/k^2 but 1/n^2 because thats the fixed epsilon and not 1/k^2 with index k in the sum., – mathfemi Sep 05 '14 at 11:23
  • I've edited a bit on $ε$, it should be understood as depending on $n$. About $k$, it is just purely notation to indicate that you taking the sum from 1 to n. – SiXUlm Sep 05 '14 at 11:36
  • I really cannot understand you, I am sorry for that. I simply do not understand why $\sum_{k=1}^{n}\lvert a_k\rvert < \sum_{k=1}^{n}1/k^2$. – mathfemi Sep 05 '14 at 11:49
1

Is very easy with Cesàro-Stolz: $$\lim_{n\to\infty}\frac{\sum_{i=0}^{n-1}\lvert a_i\rvert}n=\lim_{n\to\infty}\frac{|a_n|}{1}=\lim_{n\to\infty}|a_n|=|\lim_{n\to\infty}a_n|=0.$$