Let $(a_n)_{n\in\mathbb{N}}$ be q sequence of real numbers with $\lim_{n\to\infty}a_n=0$. Show that this implies $$ \lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\lvert a_i\rvert=0. $$
This is my idea how to prove it, unfortunately do not know if it is right:
Let $\varepsilon > 0$ be arbitrary, then there exists a $N(\varepsilon)$ with $\lvert a_n\rvert < \varepsilon$ for all $n\geqslant N(\varepsilon)$.
So it is $$ \lim_{n\to\infty}\sum_{i=0}^{n-1}\lvert a_i\rvert=\sum_{i=0}^{\infty}\lvert a_i\rvert=\sum_{i=0}^{N(\varepsilon)-1}\lvert a_i\rvert+\sum_{i=N(\varepsilon)}^{\infty}\lvert a_i\rvert\leqslant\sum_{i=0}^{N(\varepsilon)-1}\lvert a_i\rvert+\sum_{i=N(\varepsilon)}^{\infty}\varepsilon\leqslant M $$ for a $M\geqslant 0$ for $\varepsilon \to 0$.
So the limits exists. Because $\lim_{n\to\infty}\frac{1}{n}=0$, i.e. the limit exsits, too, one can write the limit as the product of both limits, i.e. $$ \lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\lvert a_i\rvert=\lim_{n\to\infty}\frac{1}{n}\cdot\lim_{n\to\infty}\sum_{i=0}^{n-1}\lvert a_i\rvert=0\cdot M=0. $$