So I am a bit stuck on where to begin with this one...
Show that $C^1[0,1]$ with the norm defined as $\|f\|=\|f\|_\infty + \|f^\prime\|_\infty$ is a Banach space.
I started with an arbitrary Cauchy sequence, $f_n \to f$, so we know that for every $\epsilon > 0, \exists M \in \mathbb{N}$ such that $\|f_n - f\| \leq \epsilon , \forall n \geq M.$
Where I am getting stuck, is how do we then show that $f \in C^1[0,1]$, and that therefore $C^1[0,1]$ with the norm defined, is complete (and therefore a Banach space).
So here is my attempted solution, based on the comments below:
Assume $f_n$ is a Cauchy sequence in $C^1[0,1]$, then for every $\epsilon > 0, \exists M \in \mathbb{N}$ such that
$$\|f_n - f_m\|=\|f_n - f_m\|_\infty + \|f_n^\prime - f_m^\prime \|_\infty \leq \epsilon, \forall m,n\geq M.$$
So for any fixed $x \in C^1[0,1], \|f_n - f_m\|_\infty \leq \epsilon$ and $\|f_n^\prime - f_m^\prime \|_\infty \leq \epsilon$ and thus for this fixed $x$ $f_n$ and $f_n^\prime$ are Cauchy sequences, and therefore converge: $f_n \to f$ and $f_n^\prime \to f^\prime.$
So let $m \to \infty$ then $\|f_n - f\|\leq \epsilon, \forall n\geq M, \forall x\in [0,1]$. Then:
\begin{align}\|f_n - f\|&= \|f_n - f\|_\infty + \|f_n^\prime - f^\prime \|_\infty\\ &=\sup_{x\in [0,1]}|f_n(x)-f(x)| + \sup_{x\in [0,1]}|f_n^\prime (x)-f^\prime (x)|\\&\leq \epsilon\quad \forall n\geq M. \end{align}
Therefore $\lim_{n\to \infty} \|f_n - f\| = 0 \implies$ $C^1[0,1]$ is complete.
How is this looking?
So the point here is that individual norms go to zero, too (and uniformly so).
– David P Sep 05 '14 at 04:33