$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{{\cal I}_{n} \equiv\sum_{k = 0}^{n}{H_{k + 1} \over n - k + 1}
=\sum_{k = 1}^{n + 1}{H_{k} \over n - k + 2}:\ {\large ?}}$.
\begin{align}
\sum_{n = 0}^{\infty}{\cal I}_{n}z^{n}&
=\sum_{n = 1}^{\infty}{\cal I}_{n - 1}z^{n - 1}=
\sum_{n = 1}^{\infty}z^{n - 1}\sum_{k = 1}^{n}{H_{k} \over n - k + 1}
=\sum_{k = 1}^{\infty}H_{k}\sum_{n\ =\ k}^{\infty}{z^{n - 1} \over n - k + 1}
\\[3mm]&=\sum_{k = 1}^{\infty}H_{k}\sum_{n = 1}^{\infty}{z^{n + k - 2} \over n}
={1 \over z^{2}}\sum_{k = 1}^{\infty}H_{k}z^{k}\sum_{n = 1}^{\infty}{z^{n} \over n}
={1 \over z^{2}}\bracks{-\,{\ln\pars{1 - z} \over 1 - z}}\bracks{-\ln\pars{1 - z}}
\\[3mm]&={\ln^{2}\pars{1 - z} \over z^{2}\pars{1 - z}}
={1 \over z^{2}}\,
\lim_{\mu\ \to\ -1}\partiald[2]{\pars{1 - z}^{\mu}}{\mu}
={1 \over z^{2}}\,
\lim_{\mu\ \to\ -1}\partiald[2]{}{\mu}\sum_{n = 0}^{\infty}\pars{-1}^{n}z^{n}
{\mu \choose n}
\\[3mm]&={1 \over z^{2}}\,
\lim_{\mu\ \to\ -1}\partiald[2]{}{\mu}\sum_{n = 0}^{\infty}z^{n}
{-\mu + n - 1\choose n}
\end{align}
There's not any contribution from the first two terms such that:
\begin{align}
\sum_{n = 0}^{\infty}{\cal I}_{n}z^{n}&=
{1 \over z^{2}}\,\lim_{\mu\ \to\ -1}\partiald[2]{}{\mu}\sum_{n = 2}^{\infty}z^{n}
{-\mu + n - 1\choose n}
=
\lim_{\mu\ \to\ -1}\partiald[2]{}{\mu}\sum_{n = 0}^{\infty}z^{n}
{-\mu + n + 1\choose n + 2}
\end{align}
\begin{align}
{\cal I}_{n}&\equiv\sum_{k = 0}^{n}{H_{k + 1} \over n - k + 1}
=\lim_{\mu\ \to\ -1}\partiald[2]{}{\mu}{-\mu + n + 1\choose n + 2}
\\[5mm]&=\lim_{\mu\ \to\ -1}{-\mu + n + 1 \choose n + 2}\left\lbrace%
\bracks{\Psi\pars{-\mu + n + 2} - \Psi\pars{-\mu}}^{2}
\right.
\\&\left.\phantom{\lim_{\mu\ \to\ -1}\qquad\qquad\qquad\,\,\,\,\,\,\,\,\,\,}-
\Psi'\pars{-\mu} + \Psi'\pars{-\mu + n + 2}\right\rbrace
\\[5mm]&=\bracks{\Psi\pars{n + 3} - \underbrace{\Psi\pars{1}}
_{\ds{=\ \color{#c00000}{-\gamma}}}}^{2} - \underbrace{\Psi'\pars{1}}
_{\ds{=\ \color{#c00000}{\pi^{2} \over 6}}}
+\Psi'\pars{n + 3}
\end{align}
$$\color{#66f}{\large%
\sum_{k = 0}^{n}{H_{k + 1} \over n - k + 1}
=\bracks{\Psi\pars{n + 3} + \gamma}^{2} + \Psi'\pars{n + 3} - {\pi^{2} \over 6}}
$$
$\ds{\Psi\pars{z}}$ and $\ds{\gamma}$ are the Digamma Function and the
Euler-Mascheroni Constant, respectively.
See this link.