If $S_n=\sum\limits_{t=1}^{n}{a_n}$ converges to $S$.
Let $b_n=a_1+0+a_2+0+\cdots$ upto $n$ terms. Then $$b_n=\left\{\begin{array}{cc}a_{\frac n2}& n \text{ is even} \\ a_{\frac{n+1}{2}} & n \text{ is odd} \end{array}\right.$$
Now observe that $b_{2n}\rightarrow S$ and $b_{2n+1}\rightarrow S$.
Lemma: Let $t_n$ be a sequence, if $t_{2n}\rightarrow t$ and $t_{2n+1}\rightarrow t$, then $t_n \rightarrow t$.
Use the lemma to observe that $b_n\rightarrow S$.
But the question on whether the two sequences are equal can have different answers when we change perspective of equality. The terms are not equal, both converges to same limit etc.
If $S_n$ is not convergent, we can obtain bizarre results like $1+1+1+\cdots =1+(1+-1)+1+(1+-1)+\cdots=2+2+2+\cdots$.