Hint $\ {\rm mod}\,\ x\!-\!1\!:\,\ \color{#c00}{x\equiv 1}\,\Rightarrow\, (\color{#c00}x^2\!-\!1)q(\color{#c00}x) + r(\color{#c00}x) \,\equiv\, (\color{#c00}1^2\!-\!1)q(\color{#c00}1) + r(\color{#c00}1)\,\equiv\, r(\color{#c00}1)\,$ by $\:\equiv$ Rules.
Remark $\ $ Generally note that $\ P\equiv r\pmod{\!fg}\,\Rightarrow\,P\equiv r\pmod{\! f},\ $ by $\,f\mid fg\mid P-r,\ $ i.e. congruences descend to divisors of the modulus. Above is special case $\,f,g = x\!-\!1,x\!+\!1,\,$ which yields $\ P\equiv r(x)\pmod{\!x^2\!-\!1}\,\Rightarrow\, P\equiv r(x) \pmod{\!x\!-\!1}.\,$ But $\ r(\color{#c00}x)\equiv r(\color{#c00}1)\pmod{x\!-\!1}.$