Let $F:\mathbb R^{2}\to \mathbb C$ be a function. Suppose $F\in L^{p,1}(\mathbb R \times \mathbb R); (1<p< \infty).$
Define $G:\mathbb R^{2}\to \mathbb C$ as follows: $$G(x,y):=F(y,x)$$
My Question is: Given $F\in L^{p,1}(\mathbb R^{2}); (1<p<\infty).$ Is it true that $G\in L^{p,1}(\mathbb R^{2}),$ that is, $\int_{\mathbb R} \left(\int_{\mathbb R}|G(x,y)|^{p}dx\right)^{1/p} dy < \infty$ ? If not, what is a counter example ?
Thanks,