Find the galois group the polynomial
$f(X)=(X^2-2)(X^2-3)(X^2-5)(X^2-7)$ over $\mathbb{Q}$.
A splitting field for $f(X)$ is $K=\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7})$.
We must have $[\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7}):\mathbb{Q}]=2^4$.
Moreover $Gal(K/\mathbb{Q})$ is abelian, since if $\sigma\in{Gal(K/\mathbb{Q})}$ then
$\sigma^2=1$, because $\sigma(\sqrt{2})=\pm\sqrt{2}$ (similary $\sigma(\sqrt{3}),\sigma(\sqrt{5}),\sigma(\sqrt{7})$).
By the classification of finite abelian groups; can I conclude that $Gal(K/\mathbb{Q})\approx Z_2\times{Z_2}\times{Z_2}\times{Z_2}$ ?
Thanks you all.