Since $B$ is compact, it’s closed, and we’re really trying to show that $\operatorname{cl}(A+B)=\operatorname{cl}A + B$. It’s clear that $\operatorname{cl}A+B\subseteq\operatorname{cl}(A+B)$, so the problem is to show that $\operatorname{cl}(A+B)\subseteq\operatorname{cl}A+B$. Suppose that $p\in\operatorname{cl}(A+B)$. Then, as you say, there are sequences $\langle a_n:n\in\mathbb{N}\rangle$ in $A$ and $\langle b_n:n\in\mathbb{N}\rangle$ in $B$ such that $\langle a_n+b_n:n\in\mathbb{N}\rangle$ converges to $p$.
Because $B$ is compact, the sequence $\langle b_n:n\in\mathbb{N}\rangle$ must have a convergent subsequence, say $\langle b_{n_k}:k\in\mathbb{N}\rangle$, and the limit, $b$, of this subsequence must be in $B$. For $k\in\mathbb{N}$ let $x_k=a_{n_k}+b$. Then
$$\lim_{k\to\infty}\|(a_{n_k}+b_{n_k})-x_k\|=\lim_{k\to\infty}\|b_{n_k}-b\|=0\;;$$
can you take it from there to show that $\langle x_k:k\in\mathbb{N}\rangle$ converges to $p$ and therefore that $\langle a_{n_k}:k\in\mathbb{N}\rangle$ converges to $p-b$, which of course must then be in $\operatorname{cl}A$?