I need to prove this:
If $a_{n}$ converges to $A$, then $|a_{n}|$ converges to $|A|$.
And I have this:
$a_{n} \rightarrow A$ then, given $\epsilon>0$ there exists $N \in J$ such that $$|a_{n}-A|<\epsilon$$ for $n \ge N$. Now, we consider the sequence: $$\{|a_{n}| \}$$ And we claim that: $$\{|a_{n}| \}\rightarrow |A|$$
Then using the reverse triangle inequality we have that: $$\epsilon>|a_{n}-A|>||a_{n}|-|A||\\ \Rightarrow\epsilon>||a_{n}|-|A||$$
then we have that $\{|a_{n}| \}\rightarrow |A|$
Am I right?, and Is the converse true?, Why?. Thank you.