Perhaps I'm missing something simple here, but every time I attempt this problem I get the same answer that does not make sense.
The question says, use the definition m$_{tan}=\lim\limits_{x\to a}\frac{f(x)-f(a)}{x-a}$ to find the slope of the line tangent to the graph of $f$ at $P$. I am given $f(x)=\frac{2}{x}$ and $P = (5,\frac{2}{5})$
My work:
let $a=5$:
m$_{tan}=\lim\limits_{x\to 5}\dfrac{\dfrac{2}{x}-f(5)}{x-5}$
m$_{tan}=\lim\limits_{x\to 5}\dfrac{\dfrac{2}{x}-\dfrac{2}{5}}{x-5}$
Simplify:
m$_{tan}=\lim\limits_{x\to 5}\dfrac{\dfrac{2(5-x)}{5x}}{x-5}$
m$_{tan}=\lim\limits_{x\to 5}\dfrac{2(5-x)}{5x}\cdot\dfrac{1}{x-5}$
m$_{tan}=\lim\limits_{x\to 5}\dfrac{2(5-x)}{5x(x-5)}$
Now when you plug in the limit you get $\frac{0}{0}$ which makes no sense.
Can anyone point out where I'm making the mistake?