$$x^{59} \equiv 604 \pmod{2013}$$
Could somebody give me any clue? I have no idea how to start.
I see that $59$ is prime.
$$x^{59} \equiv 604 \pmod{2013}$$
Could somebody give me any clue? I have no idea how to start.
I see that $59$ is prime.
Let $t$ be some integer such that $t^{59} \equiv 604 \pmod{2013}$; then, $t^{59} = 604+2013k$ for some integer $k$. Since $\gcd(604,2013) = 1$, Euclidean Algorithm tells us $\gcd(t^{59},2013)=1$ and thus $\gcd(t,2013)=1$. Thus, we can apply Euler's Theorem.
Note that $\varphi(2013) = 1200$ and $\gcd(1200,59) = 1$. By Bézout's Lemma, there exist integers $n,m$ such that $1200n+59m = 1$. Euler's Theorem says $t^{1200} \equiv 1 \pmod{2013}$, so $t^{1200n} \equiv 1 \pmod{2013}$.
$t^{59} \equiv 604 \pmod{2013}$
$t^{59m} \equiv 604^m \pmod{2013}$
$t^{59m} \equiv t^{59m}t^{1200n} \equiv t^{59m+1200n} \equiv t\equiv 604^m \pmod{2013}$
All you have to do is explicitly find $m$ using the Extended Euclidean Algorithm.
As $(604,2013)=1,x$ must be co-prime to $2013$
As $2013=3 \cdot 11 \cdot 61,$ using Carmichael Function,
$$x^{60}\equiv1\pmod{2013}$$
$$x^{59}\equiv604\pmod{2013}\implies x^{60}\equiv604x$$
So, we have $$604x\equiv1\pmod{2013}$$
Can you find $x$ using Euclid's Algorithm?