The Lerch transcendent, initially defined by
$$\Phi(z,s,a):=\sum_{k=0}^\infty\frac{z^k}{(a+k)^s}, \quad a>0,\Re s>1,|z|<1,$$
admits the following integral representation
$$
\Phi(z,s,a)=\int_0^{\infty}\frac{x^{s-1}e^{-ax}}{1-ze^{-x}}{\rm d}x.
$$ By differentiation
$$
\partial_z^r\Phi(z,s,a)=(-1)^r\int_0^{\infty}\frac{x^{s-1}e^{-(a+r)x}}{(1-ze^{-x})^{r+1}}{\rm d}x,
$$ then, by extension, your integral $I$ may be formally rewritten as
$$
I=\int_{0}^1 \sqrt{\frac{\ln{x}}{x^2-1}} dx=-i\sqrt{2\pi}\:\partial_z^{\! -\frac12}\Phi\left(1,\frac32,1\right)
$$
This is to show the level of complexity of this integral: fractional calculus.