Calculate the absolute value of the complex charge in the RLC circuit:
$$Q(t)=\frac{V_0e^{i\omega t}}{-\omega^2L+i\omega R+\frac{1}{c}}.$$
Find the frequency where $|Q(t)|$ is maximum.
This question is from Mathematical methods, by Boas. I am not so sure what the question is asking?
If I take absolute value then I will have:
$$\left|Q(t)\right|=\left|\frac{V_0e^{i\omega t}}{-\omega^2L+i\omega R+\frac{1}{C}}\right|= \frac{\left|V_0e^{i\omega t}\right|}{\left|-\omega^2L+i\omega R+\frac{1}{C}\right|}=\frac{V_0}{\left|-\omega^2L+i\omega R+\frac{1}{C}\right|}.$$