HINT:
This can be written as $$\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i^2}$$
$$$$
Setting $\displaystyle a_i= \frac{(-1)^{i+1}}{i^2}$:
$$\sum_{i=1}^{\infty} a_{2i-1}=\sum_{i=1}^{\infty} \frac{1}{(2i-1)^2}$$
$$\sum_{i=1}^{\infty} a_{2i}=-\frac{1}{4}\sum_{i=1}^{\infty} \frac{1}{i^2}$$
When the series $\displaystyle \sum_{i=1}^{\infty} a_{2i-1}$ and $\displaystyle \sum_{i=1}^{\infty} a_{2i}$ converge then the series $\displaystyle \sum_{i=1}^{\infty} a_{i}$ also converges.
$$\sum_{i=1}^{\infty} a_{i}=\sum_{i=1}^{\infty} a_{2i-1}+\sum_{i=1}^{\infty} a_{2i}$$
Find where the series $\displaystyle \sum_{i=1}^{\infty} a_{2i-1}$ and $\displaystyle \sum_{i=1}^{\infty} a_{2i}$ converge.