Let $A\in\mathbb{C}^{n\times n}$ be a $n$ by $n$ matrix such that $A^k = I$ for some natural number $k$. Find a nonzero annihilating polynomial of A and prove that A is diagonalizable.
I will say beforehand that this is exam preparation, not homework. Now to my attempt:
Since $A^k = I$, the polynomial $X^k - 1$ annihilates A. Now we still must prove that A is diagonalizable. That is to say, A has $n$ different eigenvalues, or, the polynomial $X^k - 1$ has $n$ distinct zeros.
Is that true so far? How do I proceed from here? Are there better approaches to this?
Thank you.