Background: I'm looking at old exams in abstract algebra. The factor ring described was described in one question and I'd like to understand it better.
Question: Let $F = \mathbb{Z}_2[x]/(x^4+x+1)$. As the polynomial $x^4+x+1$ is irreducible over $\mathbb{Z}_2$, we know that $F$ is a field. But what does it look like? By that I am asking if there exists some isomorphism from $F$ into a well-known field (or where it is straightforward to represent the elements) and about the order of $F$.
In addition: is there something we can in general say about the order of fields of the type $\mathbb{Z}_2[x]/p(x)$ (with $p(x)$ being irreducible in $\mathbb{Z}_2[x]$)?