$$first\ we\ know\ :\\
\\
\\
\because \frac{1}{\sqrt{1-2xt+t^2}}=\sum_{n=0}^{\infty }p_{n}(x)\ t^n\ \ \ \ \ \ \ \ \ \ \ (1)\\
\\
\\
\because \frac{1}{\sqrt{1-2xt+t^2}}=\sum_{m=0}^{\infty }p_{m}(x)\ t^m\ \ \ \ \ \ \ \ \ \ \ \ (2)\\
\\
by\ multiplication \ (1)\ , (2)\ \ \ \ , then\ we\ have\ \\
\\
\\
\therefore \frac{1}{1-2xt+t^2}=\sum_{n=0}^{\infty }\sum_{m=0}^{\infty }\ p_{n}(x)\ p_{m}(x)\ \ \ \ \ \ \ , at\ n=m\\
\\
\\$$
$$\therefore \frac{1}{1-2xt+t^2}=\sum_{n=0}^{\infty }\ (p_{n}(x))^2\ t^{2n}\\
\\
by\ integrating\ from\ -1\ to 1\ \ then\ we\ have\ \\
\\
\\
\therefore \int_{-1}^{1}\sum_{n=0}^{\infty }(p_{n}(x))^2dx=\frac{-1}{2t}\int_{-1}^{1}\frac{-2tdt}{1-2xt+t^2}dx=\frac{-1}{2t}ln(1-2xt+t^2)_{-1}^{1}\\
\\
\\
=\frac{-1}{2t}\left [ ln(1-2t+t^2)-ln(1+2t+t^2) \right ]=\frac{-1}{2t}\left [ ln(1-t)^2-ln(1+t)^2 \right ]\\
\\
\\
=\frac{-1}{t}\left [ ln(1-t) -ln(1+t)\right ]\\
\\
\\$$
$$=\frac{-1}{t}\left [ \frac{-t}{1} -\frac{t^2}{2}-\frac{t^3}{3}-\frac{t^4}{4}-......+(\frac{t}{1}-\frac{t^2}{2}+\frac{t^3}{3}-......\right ]\\
\\
\\
=\frac{-1}{t}\left [ \frac{-2t}{1} -\frac{2t^3}{3}-.....\right ]=2\left [ 1+\frac{t^2}{3} +\frac{t^4}{5}+......\right ]\\
\\
\\
=2\sum_{n=0}^{\infty }\frac{t^{2n}}{2n+1}=\sum_{n=0}^{\infty }\int_{-1}^{1}(p_{n}(x))^2\ t^{2n}\\
\\
\\
by\ coffecients\ we\ have\ \ \\
\\
\\
\therefore \frac{2}{2n+1}=\int_{-1}^{1}\ p_{n}(x)\ p_{m}(x)\ dx \ \ \ \ \ \ \ , n=m\\
\\$$