In this question we increased solution domain by squaring both sides of equation but what about this one ?
Here the question is to evaluate $1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{\ddots }}}}}$
$$x=1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{\ddots}}}}}$$
$$x-1=\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{\ddots }}}}}$$
$$\cfrac{1}{x-1}=1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{\ddots }}}}}$$
$$\cfrac{1}{x-1}=x$$
$$x^2-x-1 = 0$$
$$x=\frac{1\pm \sqrt{5}}{2}$$
Now, it is obvious that answer can't be negative so :
$$x=\frac{1+\sqrt{5}}{2}$$