Why is $$\sum_{k=0}^{\infty}k^2\frac{\lambda^k}{k!e^\lambda}=\lambda +\lambda^2$$
For the context: I am trying to calculate $E(X^2)$, where X is a poisson distributed random variable.
All my calculations lead to a dead end. Is there a trick to process the $k^2$? The only thing I see worth doing is pulling out $1/e^\lambda$.
Edit: Considering @Srivatsan's hint I got:
$$\sum_{k=0}^{\infty}k^2\frac{\lambda^k}{k!e^\lambda}=e^{-\lambda}\sum_{k=0}^{\infty}(k(k-1)+k)\frac{\lambda^k}{k!}=e^{-\lambda}\left( \sum_{k=0}^{\infty}k(k-1)\frac{\lambda^k}{k!}+\sum_{k=0}^{\infty}k\frac{\lambda^k}{k!}\right)$$ $$=e^{-\lambda}\sum_{k=0}^{\infty}k(k-1)\frac{\lambda^k}{k!}+e^{-\lambda}\sum_{k=0}^{\infty}k\frac{\lambda^k}{k!}=e^{-\lambda}\lambda^2\sum_{k=2}^{\infty}\frac{\lambda^{k-2}}{(k-2)!}+e^{-\lambda}\lambda\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}$$ $$=e^{-\lambda}\lambda^2\sum_{k=0}^{\infty}\frac{\lambda^k}{k!}+e^{-\lambda}\lambda\sum_{k=0}^{\infty}\frac{\lambda^k}{k!}$$ $$=\lambda^2+\lambda$$
And here we are! Thank you very much, @Srivatsan!