-1

I am to use mathematical induction to prove that:

$$1^3 + 2^3 + 3^3 + \cdots + n^3 = (1 + 2 + 3 + \cdots + n)^2 $$

Adriano
  • 41,576

1 Answers1

-1

Base case: if $n=1$ then $1^3=1^2$.

Induction step: you know that $$\sum_{i=1}^ni=\frac{n(n+1)}{2}$$ So: $$1^3+\cdots+n^3+(n+1)^3=(\frac{n(n+1)}{2})^2+(n+1)^3$$ So all what remains is to prove that: $$(\frac{n(n+1)}{2})^2+(n+1)^3=(\frac{(n+1)(n+2)}{2})^2$$

Math Gems
  • 164