Let $G$ be a finite abelian group. Prove that $(a_1 a_2 \cdots a_n)^2=e$.
My proof: $$\forall a \in \{a_1,a_2,\cdots,a_n\} \exists ! a^{-1} \in \{a_1,a_2,\cdots,a_n\}:a^{-1}a=aa^{-1}=e$$ hence, $$(a_1a_2\cdots a_n)^2=(a_1a_2\cdots a_n)(a_1a_2\cdots a_n)=(a_1a_2\cdots a_n)(a^{-1}_1a^{-1}_2\cdots a^{-1}_n)=(a_1a^{-1}_1)(a_2a^{-1}_2)\cdots (a_na^{-1}_n)=ee\cdots e=e$$
I tried showing that all $n-1$ elements in $G\setminus \{e\}$ contain a unique ($\leftarrow$ is even this true?) inverse in $G$. Is this proof valid? Should I show/explain more between the steps $(a_1a_2\cdots a_n)(a_1a_2\cdots a_n)=(a_1a_2\cdots a_n)(a^{-1}_1a^{-1}_2\cdots a^{-1}_n)$?
Thank you.