By Binet's Formula, we know that $F_n = \dfrac{1}{\sqrt{5}}\left(\phi^n-(-\phi)^{-n}\right) \approx \dfrac{1}{\sqrt{5}}\phi^n$ where $\phi = \dfrac{1+\sqrt{5}}{2}$.
Using this formula, we can get that $F_{n-1}$ is the nearest integer to $\dfrac{1}{\phi} F_n$ for large $n$
More rigorously, we have $F_{n-1} - \dfrac{1}{\phi} F_n = \dfrac{1}{\sqrt{5}}\left(\phi^{n-1}-(-\phi)^{-(n-1)}\right) - \dfrac{1}{\phi\sqrt{5}}\left(\phi^n-(-\phi)^{-n}\right)$ $= -\dfrac{(-\phi)^{-(n-1)}}{\sqrt{5}} - \dfrac{(-\phi)^{-(n+1)}}{\sqrt{5}}$ $= \dfrac{(-\phi)^{-n}}{\sqrt{5}}\left(\phi + \phi^{-1}\right) = (-\phi)^{-n}$.
Thus, for $n \ge 2$, we have $\left|F_{n-1} - \dfrac{1}{\phi} F_n \right| = \phi^{-n} < \frac{1}{2}$, and so, $F_{n-1}$ is the nearest integer to $\dfrac{1}{\phi}F_n$.
Dividing $F_n$ by $\phi$ and rounding the result to the nearest integer shouldn't be too computational.