5

How to prove this identity for $n>1/2$? $$\int_{-\infty}^{\infty}\frac{dx}{(x^2+1)^n}=\frac{\sqrt{\pi}\cdot \Gamma(n-\frac{1}{2}) }{\Gamma (n)}$$

Takos
  • 51

1 Answers1

5

Hint: Due to parity, $\displaystyle\int_{-\infty}^\infty f(x)~dx=2\cdot\int_0^\infty f(x)~dx.~$ Then, let $t=\dfrac1{1+x^2}$ , and recognize the expression of the beta function in the new integral.

Lucian
  • 48,334
  • 2
  • 83
  • 154