With $n=123456789$ the first 10 decimal digits of $m=(n^n)^n=n^{n^2}$ can be computed as follows (using Pari/GP with 60 decimal digit precision):
$$a = \log_{10}m = n^2 \log_{10}n$$ $$a=123327462732871491.130863690559566545920203026360790125577391$$
(The integer part of $a$ explains the $1.23327\times 10^{17}$ decimal digits from your Wolfram link).
The leading digits of $m$ come from the fractional part $f$ of $a$
$$f \approx0.130863690559566545920203026360790125577391$$
and are computed as $10^f$
$$m=10^f\times 10 ^{123327462732871491}$$
$$m\approx 1.351648262765413474237868427278 \times 10^{123327462732871491}.$$
Thus the leading 10 digits of $(123456789^{123456789})^{123456789}$ are $1351648262.$
Here an example with smaller $n=7$ where you can see the complete number $m=(n^n)^n$
$$m=256923577521058878088611477224235621321607$$
$$a = \log_{10}m = n^2 \log_{10}n=41.40980396069858470489859667103917348$$
$$10^f=2.569235775210588780886114772242356213216070000$$
^
is ambiguous. Here an example with smaller numbers $2^{(3^4)}= 2417851639229258349412352,;$ but your question is about $(2^3)^4 = 4096.;$ Please clarify. – gammatester Aug 18 '14 at 11:05