Note that $\left\|Ax\right\|_{2}^{2} = \left< Ax, Ax \right> = \left<x, A^{*}Ax\right>$. Since $A^{*}A$ is Hermitian and positive-semidefinite, then it has an orthonormal basis of eigenvectors $\{u_{j}\}_{j=1}^{n}$ with associated eigenvalues $\mu_{j}^{2} \in \mathbb{R}_{\ge 0}$. Then for any $x\in\mathbb{C}^{n}$, we can write $x = \sum_{j} \alpha_{j}u_{j}$ so that
\begin{align}
\left\|Ax\right\|_{2}^{2} &= \left<\sum_{j} \alpha_{j}u_{j}, \sum_{k} \mu_{k}^{2}\alpha_{k}u_{k} \right> = \sum_{k}\mu_{k}^{2}|\alpha_{k}|^{2} \le\mu_{\max}^{2}\sum_{k}|\alpha_{k}|^{2}\\
& = \rho(A^{*}A)\left\|x\right\|^{2}
\end{align}
Hence $\left\|A\right\|_{2} \le \sqrt{\rho(A^{*}A)}$. Choosing $x = u_{k}$ such that $\mu_{k} = \mu_{\max}$ shows that $\left\|A\right\|_{2} \ge \sqrt{\rho(A^{*}A)}$.
Beginning with the definition:
\begin{align}
\left\|Ax\right\|_{\infty}
&= \max_{i \in \{1,2,\ldots n\}} \left| \sum_{j} a_{ij}x_{j} \right|\\
&\le\max_{i \in \{1,2,\ldots n\}} \sum_{j} \left|a_{ij}\right|\left|x_{j} \right|\\
&\le\max_{i \in \{1,2,\ldots n\}} \sum_{j} \left|a_{ij}\right|\left|x_{\max} \right|\\
&=\max_{i \in \{1,2,\ldots n\}} \sum_{j} \left|a_{ij}\right| \left\|x\right\|_{\infty}
\end{align}
So $\left\|A\right\|_{\infty} \le \max_{i \in \{1,2,\ldots n\}} \sum_{j} \left|a_{ij}\right|$. Choose $k$ such that
\begin{align}
\sum_{j} \left|a_{kj}\right| = \max_{i \in \{1,2,\ldots n\}} \sum_{j} \left|a_{ij}\right|
\end{align}
Then choose $x$ such that $x_{j} = \overline{a_{kj}}/|a_{kj}|$ if $a_{kj} \ne 0$ and $x_{j} = 1$ if $a_{kj} = 0$. Then $\left\|x\right\|_{\infty} = 1$ and
\begin{align}
\left\|Ax\right\|_{\infty}
&\ge \left| \sum_{j} a_{kj}x_{j} \right|\\
& = \sum_{j} |a_{kj}| \\
& = \max_{i \in \{1,2,\ldots n\}} \sum_{j} \left|a_{ij}\right|
\end{align}
Again starting with the definition:
\begin{align}
\left\|Ax\right\|_{1}
&=\sum_{j} \left|\sum_{k} a_{jk}x_{k} \right| \\
&\le \sum_{k} |x_{k}|\sum_{j} |a_{jk}| \\
&\le \max_{k'} \sum_{j} |a_{jk'}| \sum_{k} |x_{k}| \\
&\le \max_{k} \sum_{j} |a_{jk}| \left\|x\right\|_{1}
\end{align}
So $\left\|A \right\|_{1} \le \max_{k} \sum_{j} |a_{jk}|$.
Now choose $\ell$ such that
\begin{align}
\sum_{j} |a_{j\ell}| = \max_{k} \sum_{j} |a_{jk}|.
\end{align}
Then choose $x$ such that $x_{\ell} = 1$ and $x_{k} = 0$ for $k\ne \ell$. Then
\begin{align}
\left\|Ax\right\|_{1}
&= \sum_{j}\left|\sum_{k} a_{jk}x_{k} \right| \\
&= \sum_{j} |a_{j\ell}| \\
&= \max_{k} \sum_{j} |a_{jk}|
\end{align}
Since $\left\|x\right\|_{1} = 1$, this completes the proof.