I'm working through an assignment, and have become stuck understanding the question...
In part (a) I am asked to solve the equation: $z^5 = -1$
I have done this, so I now have a set of solutions: $z_0, z_1, z_2, z_3, z_4$ (one $\in \mathbb{R}$ the rest $\in \mathbb{C}$)
My confusion arises in part (b):
Let $z_0, z_1, z_2, z_3, z_4$ be the solutions that you found in part (a). Use the factorisation $$z^5+1=(z-z_0)(z-z_1)(z-z_2)(z-z_3)(z-z_4)$$ to determine the complex number that is obtained by multiplying together all the solutions of the equation $z^5=-1$.
I can happily multiply the solutions $z_0, z_1, z_2, z_3, z_4$, but I just have no idea what the relevance of the factorisation is. I'm missing something but I have no idea what, I'm guessing I have forgotten something fundamental, or my cognitive leaps are mere cognitive hops.
Sorry of any gaps/vaguery in the above, I don't want to be in a position of being accused of publishing any answers to the problem online. And please - I don't want the answer, I just want a nudge in the direction the question is pointing.