X, Y are independent standard normal random variables, what is the distribution of $$ \frac{X}{X+Y} $$
Could anyone help me with this? Thanks.
I have worked the problem by multivariable transformation:
Let $$Z=\frac{X}{X+Y} , W=X$$
Consider transformation $$(X,Y)\longrightarrow(Z,W)$$
Then $$X(Z,W)=W , Y(Z,W)=\frac{W(1-Z)}{Z}$$ defines the inverse transformation.
The Jacobian is $$J(Z,W)=\frac{w}{z^{2}} $$
So $$f_{Z,W}(z,w)=f_{X,Y}(w,\frac{w(1-z)}{z})\cdot\mid\frac{w}{z^{2}}\mid$$
As X and Y are independent. Then the marginal pdf of Z is $$f_{Z}(z)=\intop_{0}^{\infty}\frac{w}{z^{2}}\cdot f_{X}(w)\cdot f_{Y}(\frac{w(1-z)}{z})dw+\intop_{-\infty}^{0}-\frac{w}{z^{2}}\cdot f_{X}(w)\cdot f_{Y}(\frac{w(1-z)}{z})dw$$ After calculation we get $$f_{Z}(z)=\frac{1}{\pi\cdot\frac{1}{2}\cdot(1+(\frac{z-\frac{1}{2}}{\frac{1}{2}})^{2})}$$
Hence $$Z\sim \mathrm{Cauchy}(\frac{1}{2},\frac{1}{2}).$$