It is easy to create a bijection between two bounded open intervals of $\mathbb{R}$, such as:
$$ \begin{align} f : (a,b) &\to (\alpha,\beta) \\ x &\mapsto \alpha+(x-a)(\beta-\alpha). \end{align} $$
It is also possible to biject a bounded open interval of $\mathbb{R}$ onto the whole of $\mathbb{R}$, e.g.:
$$ \begin{align} f : (a,b) &\to \mathbb{R} \\ x &\mapsto \tanh^{-1} x. \end{align} $$
Consider now the set of rational numbers $\mathbb{Q}$. The bijection between two bounded open intervals still holds, but is it possible to biject: $$ f : (p,q) \to \mathbb{Q} $$
where $p,q\in\mathbb{Q}$ and $(p,q) = \{x\in \mathbb{Q} : p < x < q\}$?