Prove using esplion-delta.
$$\lim_{x \to 1-} \left[\frac{1}{x}\right]=1$$
My prove :
All $\varepsilon>0$ exist $\delta>0$ so all x that appiles $1-\delta<x<1$ appiles $\left|\left[\frac{1}{x}\right]-1\right|<\varepsilon$
So for $\delta=1$ exist $\varepsilon>0$ .
Therefore :
$$1-\delta<x<1$$ $$1-1<x<1$$ $$0<x<1$$
As well :
$$0<\frac{1}{x}<1$$
Therefore :
$$\left|\left[\frac{1}{x}\right]-1\right|=|0-1|=1<\varepsilon$$
I'm not sure I did it correctly, Since I didn't come up with $\delta$ that depends on $\varepsilon$ could somebody explain? any help will be appreciated.