Problem:
Show that $$ \int_{1}^{\infty} \left| \frac{\sin x}{x} \right| \,\mathrm{d}x $$ diverges.
I know that there are many questions in which this problem is solved, but I want to know if my proof is correct.
My attempt.
Since
$$ \int_{1}^{\pi} \left| \frac{\sin x}{x} \right| \,\mathrm{d}x $$ converges, it suffices to show that
$$ \int_{\pi}^{\infty} \left| \frac{\sin x}{x} \right| \,\mathrm{d}x $$
diverges. We can use
$$\int_{\pi}^{\infty} \left|\frac{\sin x}{x} \right| \,\mathrm{d}x = \left[\sum_{n=1}^{\infty} \int_{2n\pi}^{(2n+1)\pi} \frac{\sin t}{t} \, \mathrm{d}t \right] - \left[\sum_{n=0}^{\infty} \int_{(2n+1)\pi}^{2(n+1)\pi} \frac{\sin \omega}{\omega} \,\mathrm{d}\omega \right] $$
With the substitution $x = t - 2n\pi \implies \mathrm{d}t = \mathrm{d}x$, $$\int_{2n\pi}^{(2n+1)\pi} \frac{\sin t}{t} \,\mathrm{d}t = \int_{0}^{\pi} \frac{\sin x}{x + 2n\pi} \,\mathrm{d}x $$
and, with the substitution $x = \omega - (2n+1)\pi \implies \mathrm{d}\omega = \mathrm{d}x$,
$$ \int_{(2n+1)\pi}^{2(n+1)\pi} \frac{\sin \omega}{\omega}\,\mathrm{d}\omega = -\int_{0}^{\pi}\frac{\sin x}{x + (2n+1)\pi}\,\mathrm{d} x$$,
then,
$$\int_{\pi}^{\infty} \left|\frac{\sin x}{x} \right| \,\mathrm{d}x = \left[\int_{0}^{\pi}\sin x\sum_{n=1}^{\infty}\frac{1}{x + 2n\pi} \,\,\mathrm{d}x\right] + \left[\int_{0}^{\pi} \sin x \sum_{n=0}^{\infty}\frac{1}{x + (2n+1)\pi} \,\, \mathrm{d}x\right]$$
Since $x \in [0,\pi]$, both $\displaystyle{\sum_{n=1}^{\infty}\frac{1}{x + 2n\pi}}$ and $\displaystyle{\sum_{n=0}^{\infty}\frac{1}{x + (2n+1)\pi}}$ diverge, then the integral $$\int_{\pi}^{\infty} \left|\frac{\sin x}{x} \right| \,\mathrm{d}x $$ diverges. Therefore, the integral $$ \int_{1}^{\infty} \left| \frac{\sin x}{x} \right| \,\mathrm{d}x $$ will do so. $\square$
Edit: 08-12-14 at 00:38
Does this make the proof better in any way?
$$\int_{\pi}^{\infty} \left|\frac{\sin x}{x} \right| \,\mathrm{d}x = \left[ \sum_{n=1}^{\infty}\int_{0}^{\pi}\frac{\sin x}{x+2n\pi}\,\mathrm{d}x \right] + \left[ \sum_{n=0}^{\infty}\int_{0}^{\pi}\frac{\sin x}{x+(2n+1)\pi}\,\mathrm{d}x \right]$$
Since $\forall\,x \in [0, \pi] \,\, \sin x \ge 0$, $n \ge 1$ and $ \dfrac{1}{\pi\left(2n+1\right)}\le \dfrac{1}{x + 2n\pi} \le \dfrac{1}{2n\pi} \,\, \forall\,x\in [0,\pi]$ we have
$$ \underbrace{\dfrac{\sin x}{\pi\left(2n+1\right)}\le \dfrac{\sin x}{x + 2n\pi}}_{\text{(I)}} \le \dfrac{\sin x}{2n\pi} \,\, \forall\,x\in [0,\pi] $$
Integrating (I) from $0$ to $\pi$, we get $$ \int_{0}^{\pi} \frac{\sin x}{x + 2n\pi}\,\mathrm{d}x \ge \frac{2}{\pi} \frac{1}{2n+1} $$
Adding all the terms in $n$ and noting that the series $\displaystyle{\sum_{n=1}^{\infty} \frac{1}{2n+1}}$ diverges, we conclude that the term between the first brackets blows up as $n \to \infty$. A similar procedure may be used to see what happens to the term between the other brackets, which will diverge also. Then, I think we can conclude more convincingly that the integral diverges. Am I right?