4

I am trying to use congruence theorems, specifically Euler's Theorem for a proof.

Shabbeh
  • 1,574

3 Answers3

9

$4^m + 5^m \equiv (-5)^m + 5^m \equiv -5^m + 5^m \equiv 0 \mod 9 $

AgentS
  • 12,195
4

No need of them. If $m$ is an odd integer, then: $$(x+y)\mid (x^m+y^m),$$ since: $$x^m+y^m = (x+y)(x^{m-1}-\cdots+y^{m-1}).$$ Now just take $x=4$ and $y=5$.

Adriano
  • 41,576
Jack D'Aurizio
  • 353,855
3

We have $$4^{2m+1} = 4\cdot 16^m\equiv 4(-2)^m \pmod 9$$ and $$5^{2m+1} = 5 \cdot 25^{m} \equiv 5 (-2)^{m} \pmod{9}.$$

Add them toghether to find $4^{2m+1}+5^{2m+1} \equiv 9(-2)^m \equiv 0 \pmod9$.

Tulip
  • 4,876