I would like to know how to evaluate the integral $$\int^1_0\frac{\ln{x} \ \mathrm{Li}_2(x)}{1-x}dx$$ I tried expanding the integrand as a series but made little progress as I do not know how to evaluate the resulting sum. \begin{align} \int^1_0\frac{\ln{x} \ \mathrm{Li}_2(x)}{1-x}dx &=\int^1_0\sum_{n \ge 1}\frac{x^n}{n^2}\sum_{k \ge 0}x^k\ln{x}dx\\ &=\sum_{n \ge 1}\frac{1}{n^2}\sum_{k \ge 0}\int^1_0x^{n+k}\ln{x}dx\\ &=-\sum_{n \ge 1}\frac{1}{n^2}\sum_{k \ge 0}\frac{1}{(n+k+1)^2} \end{align} I am aware that a similar question has been answered here, however, I find that the answers are not detailed enough for someone who has a shallow understanding on Euler sums, such as myself, to fully comprehend. Hence, I would like to seek your help on the techniques that can be used to evaluate this integral. Thank you.

- 25,498

- 5,554
-
Note that, if you bring $n^{-2}$ inside the second summation, then it looks like you can do a partial fractions expansion. That might lead to a tractable double sum... – Semiclassical Aug 11 '14 at 03:25
-
1There is a standard "Fubini-style"-trick when dealing with $$\sum_{n\geq 1}\frac{H_n^{(k)}}{n^k},$$ as explained below. – Jack D'Aurizio Aug 11 '14 at 03:50
5 Answers
$$2\sum_{n\geq 1}\frac{1}{n^2}\sum_{m>n}\frac{1}{m^2}=\left(\sum_{n\geq 1}\frac{1}{n^2}\right)^2 -\sum_{n\geq 1}\frac{1}{n^4}=\zeta(2)^2-\zeta(4)=\frac{\pi^4}{60},$$ hence the value of your integral is just $-\frac{\pi^4}{120}$. Pretty nice.

- 353,855
-
1+1 This answer is clean and concise. Forgive my foolishness but I have trouble seeing how you got $$2\sum_{n\geq 1}\frac{1}{n^2}\sum_{m>n}\frac{1}{m^2}=\left(\sum_{n\geq 1}\frac{1}{n^2}\right)^2 -\sum_{n\geq 1}\frac{1}{n^4}$$. Do you mind explaning this slightly more? Thanks a lot. – SuperAbound Aug 11 '14 at 04:01
-
1Just write down $\left(\sum\frac{1}{n^2}\right)^2=\sum_{n,m}\frac{1}{m^2 n^2}$ and divide the sum into three cases, $n<m,n>m$ (the contribute is symmetric) then $n=m$. – Jack D'Aurizio Aug 11 '14 at 04:03
I present an alternative evaluation of the integral that does not make use of Euler sums at all. Instead, I apply Felix Martin's wonderful procedure of evaluation via derivatives of beta functions and polygamma functions, a technique which he has mastered. For example, see here.
Applying the reflection substitution about the interval $[0,1]$, $x\mapsto1-x$, and using Euler's dilogarithm identity,
$$\operatorname{Li}_2{(1-x)}=\zeta{(2)}-\operatorname{Li}_2{(x)}-\ln{(1-x)}\ln{(x)},~~~\text{(Euler)},$$
we can split up the integral into a sum of three integrals, the first two of which have simple anti-derivatives in terms of the dilogarithm function (see appendix below):
$$\begin{align} \int_{0}^{1}\frac{\ln{(x)}\operatorname{Li}_2{(x)}}{1-x}\mathrm{d}x &=\int_{0}^{1}\frac{\ln{(1-x)}\operatorname{Li}_2{(1-x)}}{x}\mathrm{d}x\\ &=\zeta{(2)}\int_{0}^{1}\frac{\ln{(1-x)}}{x}\mathrm{d}x-\int_{0}^{1}\frac{\ln{(1-x)}\operatorname{Li}_2{(x)}}{x}\mathrm{d}x-\int_{0}^{1}\frac{\ln^2{(1-x)}\ln{(x)}}{x}\mathrm{d}x\\ &=\zeta{(2)}\left[-\operatorname{Li}_2{(1)}\right]-\left[-\frac12\operatorname{Li}_2{(1)}^2\right]-\int_{0}^{1}\frac{\ln^2{(1-x)}\ln{(x)}}{x}\mathrm{d}x\\ &=-\frac12\zeta{(2)}^2-\int_{0}^{1}\frac{\ln^2{(1-x)}\ln{(x)}}{x}\mathrm{d}x\\ &=-\frac{\pi^4}{72}-\int_{0}^{1}\frac{\ln^2{(1-x)}\ln{(x)}}{x}\mathrm{d}x. \end{align}$$
The last integral can evaluated as derivatives of a beta function.
$$\begin{align} \int_{0}^{1}\frac{\ln^2{(1-x)}\ln{(x)}}{x}\mathrm{d}x &=\lim_{\mu\to 0}\lim_{\nu\to 1}\int_{0}^{1}x^{\mu-1}(1-x)^{\nu-1}\ln^2{(1-x)}\ln{(x)}\mathrm{d}x\\ &=\lim_{\mu\to 0}\lim_{\nu\to 1}\frac{\partial}{\partial\mu}\frac{\partial^2}{\partial\nu^2}\int_{0}^{1}x^{\mu-1}(1-x)^{\nu-1}\mathrm{d}x\\ &=\lim_{\mu\to 0}\lim_{\nu\to 1}\frac{\partial}{\partial\mu}\frac{\partial^2}{\partial\nu^2}\operatorname{B}{(\mu,\nu)}\\ &=\lim_{\mu\to 0}\lim_{\nu\to 1}\frac{\partial}{\partial\mu}\operatorname{B}{(\mu,\nu)}\left[(\psi{(\nu)}-\psi{(\mu+\nu)})^2+\psi^{(1)}{(\nu)}-\psi^{(1)}{(\mu+\nu)}\right]\\ &=\lim_{\mu\to 0}\lim_{\nu\to 1}\operatorname{B}{(\mu,\nu)}\left[\left(\psi{(\mu)}-\psi{(\mu+\nu)}\right) \left(\left(\psi{(\nu)}-\psi{(\mu+\nu)}\right)^2 - \psi^{(1)}{(\mu+\nu)}+\psi^{(1)}{(\nu)}\right)-2\left(\psi{(\nu)}-\psi{(\mu+\nu)}\right)\psi^{(1)}{(\mu+\nu)}-\psi^{(2)}{(\mu+\nu)}\right]\\ &=\lim_{\mu\to 0}\operatorname{B}{(\mu,1)}\left[\left(\psi{(\mu)}-\psi{(\mu+1)}\right)\left(\left(\psi{(1)}-\psi{(\mu+1)}\right)^2-\psi^{(1)}{(\mu+1)}+\psi^{(1)}{(1)}\right)-2\left(\psi{(1)}-\psi{(\mu+1)}\right)\psi^{(1)}{(\mu+1)}-\psi^{(2)}{(\mu+1)}\right]\\ &=\lim_{\mu\to 0}\frac{1}{\mu}\left[-\frac{1}{\mu}\left(H_{\mu}^2-\psi^{(1)}{(\mu+1)}+\psi^{(1)}{(1)}\right)+2H_{\mu}\psi^{(1)}{(\mu+1)}-\psi^{(2)}{(\mu+1)}\right]\\ &=\lim_{\mu\to 0}\left[\frac{2H_{\mu}\psi^{(1)}{(\mu+1)}}{\mu}-\frac{H_{\mu}^2-\psi^{(1)}{(\mu+1)}+\zeta{(2)}}{\mu^2}-\frac{\psi^{(2)}{(\mu+1)}}{\mu}\right]\\ &=\lim_{\mu\to 0}\left[\frac{2H_{\mu}\psi^{(1)}{(\mu+1)}}{\mu}-\frac{H_{\mu}^2-\psi^{(1)}{(\mu+1)}+\zeta{(2)}+\mu\,\psi^{(2)}{(\mu+1)}}{\mu^2}\right]\\ &=2\zeta^2{(2)}-\frac{11\pi^4}{180}\\ &=-\frac{\pi^4}{180}. \end{align}$$
Hence, the integral come to a value of:
$$\int_{0}^{1}\frac{\ln{(x)}\operatorname{Li}_2{(x)}}{1-x}\mathrm{d}x=\frac{\pi^4}{180}-\frac{\pi^4}{72}=-\frac{\pi^4}{120}.$$
Appendix
The most common integral representation for the dilogarithm function is,
$$\operatorname{Li}_2{(z)}=-\int_{0}^{z}\frac{\ln{(1-t)}}{t}\mathrm{d}t.$$
Hence, the value of the first integral is:
$$\int_{0}^{1}\frac{\ln{(1-x)}}{x}\mathrm{d}x=-\operatorname{Li}_2{(1)}.$$
Note that the integral representation implies that $\operatorname{Li}_2{(0)}=0$. The value of the dilogarithm function at $z=1$ is given by the zeta function: $\operatorname{Li}_2{(1)}=\zeta{(2)}=\frac{\pi^2}{6}$.
The second integral may be found readily via integration by parts:
$$\int_{0}^{1}\frac{\ln{(1-x)}\operatorname{Li}_2{(x)}}{x}\mathrm{d}x=-\operatorname{Li}_2{(x)}^2\bigg{|}_{0}^{1}-\int_{0}^{1}\frac{\ln{(1-x)}\operatorname{Li}_2{(x)}}{x}\mathrm{d}x\\ \implies 2\int_{0}^{1}\frac{\ln{(1-x)}\operatorname{Li}_2{(x)}}{x}\mathrm{d}x=-\operatorname{Li}_2{(1)}^2.$$

- 29,921
-
+1 This is a very detailed answer. I obtained this integral when I was attempting to evaluate the last integral. I considered solving it also by differentiating the beta function thrice, but that ended up being too painful for me. I see that it was absolutely no problem for you though! :) – SuperAbound Aug 11 '14 at 23:28
-
@Superabound Oh, make no mistake, it was painful for me too! It just so happens I gained ALOT of experience doing these kinds of integrals when I was working on my answer to this question. I added a little more detail of the steps to evaluating that third derivative of the beta function, if that helps. – David H Aug 11 '14 at 23:34
-
5You can arrive faster to the main result without the Euler Reflection Formula as follows: $$ \int_{0}^{1}{\ln\left(x\right){\rm Li}{2}\left(x\right) \over 1 - x},{\rm d}x =\int{0}^{1}\ln\left(1 - x\right)\left[{{\rm Li}{2}\left(x\right) \over x} + \ln\left(x\right){\rm Li}{2}'\left(x\right)\right],{\rm d}x =-\int_{0}^{1}{\rm Li}{2}'\left(x\right){\rm Li}{2}\left(x\right),{\rm d}x - \int_{0}^{1}{\ln\left(x\right)\ln^{2}\left(1 - x\right) \over x},{\rm d}x $$ – Felix Marin Aug 26 '14 at 05:18
\begin{align} I&=\int_0^1\frac{\ln x\operatorname{Li}_2(x)}{1-x}\ dx\\ &=\sum_{n=1}^\infty\left(H_n^{(2)}-\frac1{n^2}\right)\int_0^1x^{n-1}\ln x\ dx\\ &=\sum_{n=1}^\infty\frac1{n^4}-\sum_{n=1}^{\infty}\frac{H_n^{(2)}}{n^2}\\ &=\zeta(4)-\frac74\zeta(4)\\ &=-\frac34\zeta(4). \end{align}
Proof of the last sum: Using $\displaystyle\sum_{m=1}^\infty \sum_{n=1}^m a_mb_n=\sum_{n=1}^\infty \sum_{m=n}^\infty a_mb_n$, we have
\begin{align} \sum_{m=1}^\infty\frac{H_m^{(r)}}{m^s}&=\sum_{m=1}^\infty\sum_{n=1}^m \frac{1}{n^r m^s}\\ &=\sum_{n=1}^\infty\left(\sum_{m=n}^\infty\frac{1}{m^s}\right)\frac1{n^r}\\ &=\sum_{n=1}^\infty\left(\sum_{m=1}^\infty\frac{1}{m^s}-\sum_{m=1}^n\frac1{m^s}+\frac1{n^s}\right)\frac1{n^r}\\ &=\sum_{n=1}^\infty\sum_{m=1}^\infty\frac1{n^rm^s}-\sum_{n=1}^\infty\frac{H_n^{(s)}}{n^r}+\sum_{n=1}^\infty\frac{1}{n^{r+s}}\\ &=\zeta(r)\zeta(s)-\sum_{n=1}^\infty\frac{H_n^{(s)}}{n^r}+\zeta(r+s), \end{align}
or
$$\sum_{n=1}^\infty\frac{H_n^{(s)}}{n^r}+\sum_{n=1}^\infty\frac{H_n^{(r)}}{n^s}=\zeta(r)\zeta(s)+\zeta(r+s).$$
Setting $r=s=2$ gives $\displaystyle \sum_{n=1}^\infty\frac{H_n^{(2)}}{n^2}=\frac12\zeta^2(2)+\frac12\zeta(4)=\frac74\zeta(4).$

- 25,498
\begin{align}\text{J}&=\int^1_0\frac{\ln{x} \ \mathrm{Li}_2(x)}{1-x}dx\\ &\overset{\text{IBP}}=\underbrace{\Big[-\ln(1-x)\ln x\mathrm{Li}_2(x)\Big]_0^1}_{=0}+\underbrace{\int_0^1\frac{\ln(1-x)\text{Li}_2(x)}{x}dx}_{=-\frac{1}{2}\text{Li}^2_2(1)}-\underbrace{\int_0^1 \frac{\ln^2(1-x)\ln x}{x}dx}_{\text{IBP}}\\ &=-\frac{\pi^4}{72}-\int_0^1 \frac{\ln(1-x)\ln^2 x}{1-x}dx\\ &\overset{\text{IBP}}=-\frac{\pi^4}{72}-\left[\left(\left(\int_0^x \frac{\ln^2 t}{1-t}dt\right)-\int_0^1\frac{\ln^2 t}{1-t}dt\right)\ln(1-x)\right]_0^1-\\&\int_0^1 \frac{1}{1-x}\left(\left(\int_0^x \frac{\ln^2 t}{1-t}dt\right)-\int_0^1 \frac{\ln^2 t}{1-t}dt\right)dx\\ &=-\frac{\pi^4}{72}-\int_0^1 \frac{1}{1-x}\left(\left(\int_0^x \frac{\ln^2 t}{1-t}dt\right)-\int_0^1 \frac{\ln^2 t}{1-t}dt\right)dx\\ &=-\frac{\pi^4}{72}-\int_0^1 \int_0^1 \left(\frac{x\ln^2(tx)}{(1-tx)(1-x)}-\frac{\ln^2 t}{(1-x)(1-t)}\right)dtdx\\ &=-\frac{\pi^4}{72}+\int_0^1\int_0^1\left(\frac{\ln^2(tx)}{(1-t)(1-tx)}+\frac{\ln^2 t}{(1-t)(1-x)}-\frac{\ln^2(tx)}{(1-t)(1-x)}\right)dtdx\\ &=-\frac{\pi^4}{72}+\int_0^1\int_0^1\left(\frac{\ln^2(tx)}{(1-t)(1-tx)}-\frac{\ln^2 x}{(1-t)(1-x)}\right)dtdx-\\&2\underbrace{\left(\int_0^1 \frac{\ln t}{1-t}dt\right)}_{=-\frac{\pi^2}{6}}\left(\int_0^1 \frac{\ln x}{1-x}dx\right)\\ &=-\frac{5\pi^4}{72}+\int_0^1 \left(\frac{1}{t(1-t)}\left(\int_0^t \frac{\ln^2 u}{1-u}du\right)-\frac{1}{1-t}\left(\int_0^1\frac{\ln^2 x}{1-x}dx\right)\right)dt\\ &=-\frac{5\pi^4}{72}+\int_0^1 \frac{1}{t}\left(\int_0^t \frac{\ln^2 u}{1-u}du\right)dt-\int_0^1 \frac{1}{1-t}\left(\int_t^1 \frac{\ln^2 u}{1-u}du\right)dt\\ &\overset{\text{IBP}}=-\frac{5\pi^4}{72}-\underbrace{\int_0^1 \frac{\ln^3 t}{1-t}dt}_{=-6\zeta(4)=-\frac{\pi^4}{15}}+\underbrace{\int_0^1 \frac{\ln(1-t)\ln^2 t}{1-t}dt}_{-\frac{\pi^4}{72}-\text{J}}\\ &=-\frac{\pi^4}{60}-\text{J}\\ &=\boxed{-\dfrac{\pi^4}{120}} \end{align}

- 13,647
Evaluate the integral $I$ below in two ways
\begin{align} I=&\int_0^1 \frac{\ln^2x \ln (1-x)}{1-x}dx\\ = &\int_0^1 \frac{\ln^2x}{1-x}\left(\int_0^1 \frac {-x}{1-x y}dy\right) dx =\int_0^1 \frac{1}{1-y}\left(\int_0^1 \frac {\ln^2x}{1-yx}dx - 2Li_3(1)\right) dy \\ =& \>2 \int_0^1\frac{Li_3(y)}{y}dy + 2 \int_0^1\frac{Li_3(y)-Li_3(1)}{1-y}\>\overset{ibp}{dy} = 2Li_4(1) - Li_2^2(1)\\\\ I =&\int_0^1 \frac{\ln x \ln^2(1-x)}{x}dx \overset{ibp}=- \int_0^1 \frac{\ln x Li_2(x)}{1-x}dx - \frac12 Li_2^2(1) \end{align}
which leads to $$\int_0^1 \frac{\ln x Li_2(x)}{1-x}dx=-2Li_4(1)+\frac12Li_2^2(1)=-\frac{\pi^4}{120} $$

- 97,352