1

The limit $\lim_{x \to c}f(x) = L$ is defined for an open interval $I$ in the domain of $f$, possibly excluding $c$, as for every $\epsilon > 0$ there is a $\delta > 0$ such that for every $x \in I$ which provides $0 < |x-c| < \delta$ it is $|f(x) - L| < \epsilon$.

I want to show that if such a limit exists for the open interval $I$ then for each open interval $I^{*}$ in the domain of $f$, which contain $c$, the limit exists as well. It seems very intuitive that this is true but I could not think of a rigorous proof about it. Is it possible to give a proof for this statement?

2 Answers2

1

If $$\forall x\in I,0<|x-c|<\delta\implies |f(x)-L|<\varepsilon,$$ necessarily $$\forall x\in I^*\cap I, 0<|x-c|<\delta\implies |f(x)-L|<\varepsilon$$

where $c\in I^*$.

idm
  • 11,824
1

Let $I=(a_1,b_1)$ and $I^*=(a_2,b_2)$. For $c\in I\cap I^*$, let $$\delta_0=\min(|c-a_1|,|c-a_2|,|c-b_1|,|c-b_2|)$$

Then $\delta_0>0$ and if $|x-c|<\delta_0$ then $x\in I\cap I^*$.

Now, assume that $$\forall \epsilon>0: \exists \delta>0: \forall x\in I: \left(0<\left|x-c\right|<\delta \implies $|f(x)-L|<\epsilon\right)$$

Then, given $\epsilon>0$, find the $\delta$ and define $\delta^*=\min(\delta,\delta_0)$.

Now if $0<|x-c|<\delta^*$, we have $x\in I^*$ and $x\in I$ and $|x-c|<\delta_0\leq\delta$. So $|f(x)-L|<\epsilon$.

Thomas Andrews
  • 177,126
  • Can we interpret the last line as the following: If $\delta_0 > \delta$, then we a subset of $I \cap I^{}$ which provides the limit definition. If we have $\delta_0 \leq \delta$ then the whole $I \cap I^{}$ provides the definition. Is that right? – Ufuk Can Bicici Aug 10 '14 at 19:45