Please rate and comment. I want to improve; constructive criticism is highly appreciated. Please take style into account as well.
With one exception, the following proof is solely based on vector space axioms. Axiom names are italicised. They are defined in Wikipedia (vector space).
Vector spaces - If an addend adds nothing, then the addend is the zero vector.
Let $V$ be a vector space. By this proof, we know that a zero vector of $V$ is unique; let $0$ be the zero vector of $V$. Let $v_1, v_2 \in V$.
If $v_1 + v_2 = v_1$, then $v_2 = 0$.
Proof. We assume that $v_1 + v_2 = v_1$. It remains to prove that $v_2 = 0$. Let $(-v_1)$ be an additive inverse of $v_1$. \begin{align*} 0 &= v_1 + (-v_1) && \text{by }\textit{Inverse elements of addition} \\ &= (v_1 + v_2) + (-v_1) && \text{by assumption} \\ &= (v_2 + v_1) + (-v_1) && \text{by }\textit{Commutativity of addition} \\ &= v_2 + (v_1 + (-v_1)) && \text{by }\textit{Associativity of addition} \\ &= v_2 + 0 && \text{by }\textit{Inverse elements of addition} \\ &= v_2 && \text{by }\textit{Identity element of addition} \\ \end{align*} QED