You have:
$$ x\, F'(x) = \sum_{n=1}^{+\infty} n\,f_n\, x^n,$$
$$ x\, F(x) = \sum_{n=1}^{+\infty} f_{n-1} x^n,$$
$$ x^2\, F'(x) + x F(x) = \sum_{n=1}^{+\infty}n\, f_{n-1}\, x^n,$$
$$ x^2 F(x) = \sum_{n=2}^{+\infty} f_{n-2} x^n,$$
$$ 2x^2 F(x) + x^3 F'(x) = \sum_{n=2}^{+\infty} n f_{n-2} x^n.$$
The recursion now gives:
$$ xF'(x)-x = 2(x^2 F'(x)+xF(x))-xF(x)-(2x^2 F(x)+x^3 F'(x))+x^2F(x)+\sum_{n=2}^{+\infty}n x^n$$
or just:
$$ (1-x)^2 F'(x) = (1-x)F(x)+\sum_{n=1}^{+\infty}(n+1)x^n$$
$$ F'(x) = \frac{F(x)}{(1-x)}-\frac{1}{(1-x)^2}+\frac{1}{(1-x)^4}.$$
By setting $F(x)=G(x)-\frac{1}{2(1-x)}+\frac{1}{2(1-x)^3}$ we get the ODE:
$$ G'(x) = \frac{G(x)}{1-x},$$
so:
$$ F(x) = \frac{K}{1-x}+\frac{1}{2(1-x)^3}.$$
Since $F(x)$ has an only pole of order three in $x=1$, we have that $f_n$ is a second degree-polynomial in $n$. By interpolating the first three values we further get:
$$ f_n = \frac{n(n+3)}{4}.$$